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QUASI-MONOCHROMATIC WEAKLY NON-LINEAR WAVES 
IN A LOW-DISPERSION BUBBLE MEDIUM? 

N. A. GUMEROV 

Tyumen 

(Received 18 April 1991) 

The propagation of quasi-monochromatic wave packets in a rarefied polydispersed mixture of a weakly 

compressible liquid with a finite number of fractions of differently sized gas bubbles is considered. Two 

equations for the modulation waves are derived by the multi-scale method in the cubic approximation in the 

wave amplitude: the non-linear Schrodinger equation ignoring dissipation effects and the Landau-Ginzburg 

equation for low dissipation due to the viscosity of the liquid and heat losses associated with bubble 

vibration. The coefficients of the non-linear Schrodinger equation are investigated to analyse the non-linear 

(modulational) stability of waves in a monodispersed non-dissipative bubble medium. 

A LINEAR dispersion relationship has been previously obtained for acoustic waves in a polydispersed 
bubble medium without dissipation [l] and for waves in a dissipative medium [2]. The general 
scheme for deriving the amplitude equations by the asymptotic multiscale method has been 
described in several monographs (see, e.g. [3]). Modulation equations have been obtained [4] for 
waves in a monodispersed bubble chamber by Whitham’s averaged Lagrangian method [5]. 

1. THE EQUATIONS OF MOTION IN A NON-DISSIPATIVE MEDIUM 

The plane one-dimensional motion of an ideal weakly compressible liquid with a low volume 
content of spherical gas bubbles (ag+l) under conditions when thermal dissipation and capillary 
effects can be ignored is described by Iordanskii’s equations [l, 6,7] 

t Prikl. Mat. Mekh. Vol. 56, No. 1, pp. 58-67, 1992. 
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d,p + @,v = 0, pdtv + G’,P = 0, dtnj + nj&v = 0 

PI [ajdt’aj + ~(dlaj)2] - Pj- P, PI -Ro =Ci”(P-Pp,), P =PI(~--~) 

(1.1) 
N 

Pj = PO (ajO/aj)3”v 
4 

Ctj = 3 lVZjUj3, a, = 
c 

aj, j = 2,. . ., N 
1=2 

Here p, p and v are the density, the pressure and the velocity of the mixture, Uj, pi, aj and nj are 
the radius, the pressure, the volume fraction and the number of bubbles of fraction j per unit volume 
of the mixture (j = 2, . . . , N), pI and C, are the true liquid density and the velocity of sound in the 
pure liquid and x is the polytropic exponent (X = r, for adiabatic and x = 1 for isothermal vibrations 
of the bubbles where rg is the gas adiabatic exponent). The zero subscript denotes the unperturbed 
state, d, = a, + va, . 

An analysis of wave propagation in bubble systems [7] shows that the characteristic scales of 
variation of the density and the velocity of the medium are respectively given by p* = poo@ and 

v* = &0P0~P0Y2~ and the characteristics wave velocity is C, = [po/(a~po)]“*. Introducing the 
dimensionless variables 

ai - aj’la,, - 1, p = p’lpo - 1, p - (p’ - po)/p*. v = v’Iu*, Ej = 

= aj,la, 

t = t’lt,, 3 = x1/x*, t, = a, (polpo)x, x* = a,ai?, 

b2 = Po4p~oC?aso) 

0.2) 

where the prime denotes dimensional variables and a, is some representative bubble radius (for a 
monodispersed medium, this may be ao), and ignoring quantities of the order of c~& and 1 pf - pm 1 /plo 
compared to 1, we eliminate v from system (1.1) and write the dimensionless equations 

d,2p - at2p = 0, p - 1 - b2P + ((1 + ai)‘) = 0 

Ej2 [(I + aj) 8f21Zj + 31, (a,Uj)21 - (I + Uj)-3x + p $- 1 = 0 

j = 2,. . .,iV 

(1.3) 

Here and henceforth, angle brackets denote the action of a linear operator 

<fj> z 5v.jfj. j = 2,. . ., N 
j=2 

(1.4) 

(vi is the proportion of jth fraction bubbles in the total bubble volume). 

2. DERIVATION OF THE AMPLITUDE EQUATIONS 

Consider Eqs (1.3) and (1.4) in the neighbourhood of the equilibrium state p = 0, p = 0, aj = 0, 
representing the solutions by asymptotic series in the small parameter E (the relative perturbation 
amplitude) 

p = m.1 amp,, p = ma1 e”‘pM, aj = $I ernaj, (j :- 2, * . -9 N) (2.1) 

The dependence of the unknowns on x and t, according to the general idea of the construction of 
uniformly valid expansions by the multiscale method [3, 5, 81, is viewed as the dependences on the 
sets of “slow” coordinates and times {x,}, {tS}, X, = eSx, ts = Ct, s = 0, 1, 2, . . . All x, and tS are 
assumed to be formally independent, and the differentiation operators are represented as power 
series in E 

(2.2) 
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Substituting (2.1) and (2.2) into (1.3) and collecting terms with equal powers of E, we obtain in 
the mth approximation the linear non-homogeneous system 

L?PWl - 402pm = fm, pm - b2P,, + 3 (ap> = g, 

Ej28 to%jm + 3xajm + pm = hj,,, i z 2, . . ., N, m = 1, 2, . . . 
(2.3) 

Here fm, g, and hjm are determined from lower approximations. 
Let us consider partial solutions of system (2.3) in the form 

x,,, := XL0 + nGo ($,,,LeirlH + C- c.), 8 -= kzo - oto, x = p, p, aj, f, g, hj (2.4) 

where 0, k and o are the phase, the wave number, and the angular frequency, xmno are the complex 
amplitudes that depend only on x,, s, t ss 1 and the symbol C.C. stands for the term which is the 
complex conjugate of the first term in parentheses. By the orthogonality of the trigonometric 
system, we obtain for the nth harmonic in the mth approximation 

n2p&, (k2 - 30~ (A;:) - W2b2) = n2a2 (&,, - 3 ( AjAhj,,)) -Pm,, 

dmn = Aj;f (h&,,, - p?,,,,), p”n,,, = &, - 3 <A7$&,,) + 

+ 13 (A:;> + b21 p:,, 

A,,, = 3~ - kj2W2n2, j = 2, . . ., N, m = 1, 2, . . ., n = 0, 1, . . . 
(2.5) 

Now suppose that we have the dispersion relationship [l] (see Sec. 3) 

k2 = co2 (b2 + 3 (A:;)) (2.6) 

Then for solutions of the form (2.4) to exist it is necessary that the resonance harmonicsf, g and hi 
satisfy the following conditions: 

for n = 0: flj10 = 0, m = 1, 2, . . . 

The zeroth-harmonic solution is obtained up to an arbitrary value of pmoo: 

(2.7) 

0 pm, = &,a,, - x-l W&n,) - (1 -I Xb2) po,,,,l, (2.8) 

0 
ajl,,O = 'lax-' V&o - pko) 

for n = 1: o2 (g$, - 3 (Arthjml)) - fl,,i = 0, m = 1, 2, . . . (2.9) 

The first-harmonic solution is not unique either. Using relationships (2.5) and (2.9), we obtain 
0 

Pm1 = 0 -2 0% + k2dtld, a&, = Aj: (/z’&,~ - p;,,) (2.10) 

For all other n, we assume that if (2.6) holds, then (A,;’ ) # (A,;’ ). In this case, a unique solution 
exists [see (2.5)]: 

(2.11) 

Thus, relationships (2.5), (2.8), (2.10) and (2.11) determine the nth harmonics in the mth 
approximation. The existence conditions (2.7) and (2.9) “control” the behaviour of the complex 
amplitudes, subjecting them to corresponding differential equations in the “slow” coordinates. 

3. THE FIRST APPROXIMATION 

Suppose that the main harmonic is the monochromatic signalp = (pii’exp(i0) + c.c.). In the first 
approximation, system (2.3) is homogeneous (fi = g, = hiI = 0) and the existence conditions (2.7) 



Quasi-monochromatic weakly non-linear waves in low-dispersion bubble medium 53 

WY. YW, 8 

FIG. 1. 

and (2.9) are satisfied. The non-trivial solution (pII +O) exists only if the dispersion relationship 
(2.6) holds, and from (2.10) we have 

0 -20 0 
Pii = CJJ PI19 ajli = -A&&, j = 2, . . . , N (cp = o/k) (3.1) 

Figures 1 and 2 plot the wave number k (the solid curves), the phase velocity I+ = w/k (the dashed 
curves) and the group velocity cs = doldk (the dash-dot curves) of sound as a function of the 
frequency o for a monodispersed mixture (&G 1) and a two-fraction mixture (IV = 3, & = 1, 5s = 2, 
v2 = v3 = 0.5) of water with sufficiently large air bubbles for a pressure p. = lo5 Pa, temperature 
To = 293 K (pIo = 1000 kg/m3 and Cl = 1500 m/s), and volume content agO = 2 x 10V4 (X = rg = 1.4 
and b2 = 0.222). As we see from (2.6) the equilibrium velocity c, and the frozen velocity cfof sound 
in the mixture are given by 

c, = lim cp = lim cg = (b2 + x-‘)-%, cf = lim cp = lim c, = b-l (3.2) 
o+o o-r0 U-+00 o-W0 

The vertical dotted lines in the figures mark the boundaries of the w-regions where # < 0 (the 
so-called “acoustic opacity bands” of the medium [7]). Note that for an M-fraction mixture the 
number of such bands is M, the lower bound wri of each band is equal to the resonance frequency of 
the jth fraction bubbles wrj2 = 3x/[j2, and the upper bound Okj is the root of the equation k(w) = 0. 

4. THE SECOND APPROXIMATION 

Substituting relationships (2.1) and (2.2) into (1.3) and collecting terms in E’, we obtain from 

(2.3) 

fa = 2 (&O&IPI - a,,~,lPl), g2 = -3 (a& (4.1) 
hi, = -Ej2 [Uj18t02Ujl + ‘12 (dl0Uj1)~ f Btoat~Uj~I + 3/,~ (3% + 1) Uj12 

FIG. 2. 
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From (4.1) and (3.1) we obtain all the harmonics (2.4) of the functions fz, g2 and hjz : 

fzoO = 0, ho = -2ik (c,-i~flprlo + ~xlpllo)r fzzo = 0 

gsO” = -6 (Ajl-‘> \ pll5 I27 g$1° = 0, gg,@ = -13 (Ajl-9 fP*l@P 

A‘$@ = V~‘A~~ 1 p*: 12, h& = -2i6$j2A~~@*$,<“, l&j22 I: + Y~‘A~~~~~~)2 

Yj(‘) = 3xf35t + 1)--@& Y’i’“’ =3x(3x f 1) + 5gjw (4.2) 

Condition (2.7) is satisfied, and therefore from (2.8) and (4.2) 

p*oo = --x-l <YjMi*-2) ]JJr10 1” -I- c,-2pzo@, Y](s) = 9:: (% + 1) - E@” 
0 Ujzo = ‘l,X-’ [Yj'"'A~f 1 pll" I2 - p*o"] (4.3) 

Condition (2.9), using (2.6), gives the equation 

&P,? + @klPll ’ = 0, CB = doidk z (up-’ + ~c,o’ (~j’A~~“2>)-’ (4.4) 

which is consistent with the general theory [3,5]. Equation (4.4) shows that it is helpful to change to 
a comoving system of coordinates that moves with the group velocity: 

Pll@ (51, ts, %* &, * * .) = pn” (q1. ez% tz, ‘ * .I, ?I = 51: - @t (4.5) 

Using (4.5), we obtain from (2,lO) 

Ps? = -2i (UC,)-’ (1 - C&p’9 hgP*1* + Cp-~p~A qn** = 

= 21cgAj1-20$j2&,lpX10 - Afl-ipplo (4.6) 

The harmonic n = 2 is not a resonance harmonic, and therefore from (2.11), (2.5), (2.6) and (4.2) 
we obtain 

P2*O = - + (Y:4kj;2&,‘) <A;; - AT;>- (p**y, wy = 3x (x + I) - &%# 

p& = c;;“p&, & = A2 (‘/,‘$‘A$ (piI)” - p&] (4.7) 

5. THE SCHRdDfNGER EQUATION 

Substituting (2.1) and (2.2) into (l.J), collecting terms in ~~ and comparing with (2-J), we obtain 

We thus see that the third-approximation spectrum consists of the harmonics B = 0, 1,2,3, and 

f 30" = 0. Therefore, the first existence condition (2.7) is satisfied. To satisfy the second existence 
condition (2.9), we isolate the first harmonic in (5.1). Denoting complex conjugatia~ by a bar, we 
find from (5.1), using (3.1), (4.5) and (4.6) 



Quasi-monochromatic weakly non-linear waves in low-dispersion bubble medium 55 

- cfi2) (A;,' + 4u2Ej2A7f) 8V112p110 - 2iOCgA7;ldq#**"] + 

-+- 3% (3x+ 1) f&afn + &&l - '/,(3x + 2) a& 1 & 121 (5.2) 

Note that (5.2) contains two undefined quantitiesP2r0 and pzoo [through uj200, see (4.3)]. The first 
is automatically eliminated when (5.2) is substituted into (2.9); the second must be determined from 
supplemental considerations. To this end, we turn to the fourth approximation. We can directly 
show that 

Since the fourth-approximation solutions exist only when conditions (2.7) are satisfied (faoo = 0), we 
may assume without loss of generality that pzoo = c,*P~~’ (indeed, pzoo is determined by quadratic 
non-linearity). This and (4.3) give 

~20” = V-X-’ (cg-'- c,-2)-' (Yj'3)Ajl-') 1 ~110 12 (cd-2 = b2 + X-‘) (5.3) 

Now, with all the quantities expressed in terms of the complex pressure amplitude pIlo, we can 
substitute (5.2) into (2.9) and use (2.6), (3.1), (4.2)-(4.4), (4.7) and (5.3) to obtain 

i (a,, 4 c,&) Pll0 + B&,%X0 + ?&X0 I Pll0 I2 = 0 

8 = ‘I&ldk = ‘/,k-‘eg (1 - cg2 [5 (cPcg)-* - 4cP-2 + 120’ (&fAiCs>i) 

y = ‘l’pc&Pm (x-’ [(yJ(‘Wf(~)A,l-*) + x-l (c&?-2 - &-2)-i (YjWj~-)~l - 

--9/n I(Y,Wq’) - 3 (Y,(2)Y,(‘)Ajl-lA~g-i> + 

+ 9 (Y~4)All-2Ar,-‘)2 ( A,s-i - A,,-+} 
(y,(b) t; 27x2 (x + 1) + 2~~6~~) 

(5.4 

Changing to a coordinate system that moves with the group velocity q2 = x3 - cef2 and taking 

Pl1° = A(ni, r12t t2, -. ‘1, we obtain the non-linear Schriidinger equation (NSE) in standard form 

[3,51 

&?,,A + fM,,,2A + yA f A f2 = 0 (5.5) 

Figures 3 and 4 plot the frequency dependence of the NSE coefficients y (the solid curves) and l3 
(the dashed curves) for monodispersed (Fig. 3) and polydispersed (two-fraction, N = 3, Fig. 4) 
mixtures with the parameters x = 1.4 and b2 = 0.222. In Fig. 3, the vertical dash-dot line delimits 
the acoustic opacity bands of the medium (see Fig. l), the vertical dotted line corresponding to 

FIG.~. 
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0 w f-3 ‘“2 wr3 2 

FIG. 4. 

o = W, is the asymptote of y [the frequency o, is the root of the equation Q(O) = c, and for o-+ o, 
from (5.4) we obtain 1 y 1 + 03; geometrically, o, can be obtained from Fig. 1 by continuing the line 
c = c, to its intersection with c = cg ; at the points o = 0 and w = w, , the tangents to k(w) have equal 
slopes]. 

Curves 1 and 2 in Fig. 3 correspond to & = 1.6 and ca = 3 with & = 1, u2 = y3 = 0.5. They have 
been constructed in the frequency range w < w,.~ = (3x) 1’2. In the first case, we have a singularity in y 
for w = WA (the vertical dotted line) when (Ajr-’ (WA)) = (Aj2’(0*)) and 1 y I--, Q) for w+ WA (5.4); 
in the second case, no such singularity is observed (it exists for the two-fraction mixture with e2 = 1, 
v2 = v3 = 0.5 only when 0.5<5,<2; geometrically (see Fig. 2), the existence of this singularity is 
equivalent to the existence of the line k = Xw that crosses two branches of the dispersion 
relationship k = k(w) at the points w = wA and w = 2w,.,, respectively). The vertical dash-dot lines 
in the figure represent the resonance frequencies of the large-bubble fraction (w,s2 = 3xIss2) that 
correspond to the lower bounds of the low-frequency acoustic opacity bands; the upper bounds of 
these bands can be determined from the (finite) limiting values of B and y (the arrows on the 
curves). Note that the qualitative behaviour of B and y for polydispersed mixtures in the region 
w > wn is the same as for the monodispersed mixture (Fig. 3). 

6. MODULATIONAL INSTABILITY 

The question of the non-linear modulational instability of wave packets in a non-dissipative 
medium can be investigated by analysing the signs of the NSE coefficients [3, 51. Thus, the case 
By<0 corresponds to (neutral) stability and the case B-y>0 corresponds to Benjamin-Feir 
instability [3], when the NSE has solutions in the form of wave envelope solitons. 

Of the greatest interest apparently are the stability regions in parameter space. However, already 
for a monodispersed mixture, this space is three-dimensional (w, b, x) and its dimension increases 
by two with the addition of each new bubble fraction (Vi and tj). The number of zeros and 
singularities of the NSE coefficients, reflecting the interaction of different branches of the dispersion 
relationship, also substantially increases in this case (see Figs 3,4). 

As an example, consider the important theoretical case of a monodispersed mixture. The polytropic 
exponent x is fixed, and w and b are arbitrary [the parameter b characterizes the ratio of the carrying phase 
compressibility to the compressibility of the phase associated with the bubbles; thus for an incompressible 
carrying phase (C, = 0) b = 0, for a medium without bubbles (ago = 0) b = 00, see (1.2)]. 

The results of analysis and calculations of the stability regions (0, b) and (k, b) using relationship (5.4) for 
x = 1.4 are presented in Figs 5 and 6. The stability region pv<O is not hatched, and the acoustic opacity band 
(k’<O) is shown by diagonal hatching in Fig. 5. At the fundamental signal frequencies w<o, the wave 
envelope soliton is not created (Pr <O), and therefore if we consider the evolution of perturbations with a given 
wave number, then from the two branches of the dispersion equation (Fig. 1) o_(k), w+(k) the lower branch 
(o_(k)<o,) is stable for any k and b. The curve o = wk[wk2 = 3(b-‘+x)1 (the dash-dot curve in Fig. 5) 
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5 0 

FIG. 5. 

corresponds to the line k = 0 in Fig. 6 (Fig. 6 plots k corresponding to the upper branch 
dispersion relationship). The dashed curve (in Fig. 5 with the vertical asymptote shown by 
the curve o = o, [c,(wC) = c,, Fig. 31 with the parametric equation 

o* = 3x2-’ (I + 24, k% = 32 (i + 2z)*(i + z)-% (i - z)-” 
bP Czz x-* (1 + 2 + I*)(1 + z)-*(f - 2)-X, 0 < 2 < i 

o+(k)awk of the 
the dotted line) is 

The singularity of the coefficient y on this curve is avoidable only at the point M[ZM = (3x + 1)-l], where the 
dashed curve touches the solid curve that corresponds to y = 0. The second solid curve delimiting the 
high-frequency instability region corresponds to the second zero of the coefficient y (see also Fig. 3). The curve 
in Fig. 6 has a limiting point k = ‘~6. Note that the instability generated in the neighbourhood of the curve 
w = w, physically corresponds to the Benney long-wave/short-wave resonance [3]. 

A general result for mono- and polydispersed mixtures can be obtained by examining the 
principal terms of the low- and high-frequency asymptotic forms of the coefficients of the NSE (5.4): 

I3 Io-.rl- -*l*x-2c,4w-i (Ej2>, y lo-** - ‘/,x-2 (x + 1)%,%r’ (5&P (6.1) 
Blfv- 31,cf40-s ( Q2), y lo+go - */,x-‘cfw~ ((g-4) - 

- (&2)2) (Cf = b-‘) 

For a monodispersed mixture ($z l), the asymptotic form of y as 04 ~0 has the form 
y -%c~~w-~. By Holder’s inequality {[j-“) > (&‘)“, and therefore for mono- and polydispersed 
mixtures we obtain from (6.1) #+y < 0 for o-+ 0 and & > 0 for o-_, ~0. This corresponds to stability of 
low-frequency waves and instability of high-frequency waves. 

7. LOW DISSIPATION. THE LANDAU-GINZBURG EQUATION 

Let us now return to the original system of equations (1.1). For a viscous liquid with interacting 
phases and thermal dissipation, which may be obtained by solving the internal problem of heat 
conduction in a gas [7], the Rayleigh-Lamb equation and the polytropic oscillation equation are 
transformed [73 into the following equations: 

FIG. 6. 
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Here qi is the heat flux across the phase boundary, 7” is the temperature field inside a jth fraction 
bubble (r is the radial coordinate reckoned from the centre of the bubble) and to, A, are the 
dynamic coefficient of viscosity of the liquid and the thermal conductivity of the gas. 

Let us consider a typical case when the characteristic oscillation frequencies o, are such that the 
characteristic thickness of the unsteady thermal boundary layer in the bubbles 8r = (~~(r)/o,)“‘* 
(u (r) is the thermal dif~sivity~ is much less than the size of the bubble (Sr@ufl) andthe oscillations 
ofgthe bubbles are nearly adiabatic (x = yg). Let us estimate the orders of the terms in Eq. (7.2). 
Both terms on the left-hand side are of the same order (CM*), while the term on the right-hand side 
is -EU~~-~_P~-‘X~T~~~-~(~~~EA~~T-~T~). The ratio of the latter to the former is of the order of 
STfaioG 1 (vVg(=) = X,/(ppacP,, p. = pgORg To, Rglcps = 1 - yg-‘; pp, R,, cps are the density, the gas 
constant, and the heat capacity at constant pressure). Thus, if 8T/ajo-~~% 1, then up to the 
(m + 1)th approximation in E we can use the value of qj obtained by solving the linearized heat 
conduction problem and linearize the right-hand side of Eq. (7.2): 

a,~‘, = v&W% (r2a,.TJ + (pgoc,~)-‘dtpj, Tj IFa& z=: Tb (7.3) 

(for the gas inside the bubble we use the homobaric condition e,pj = 0 [7]). The solution of problem 
(7.3) is well known and in the case &/a@4 1 it has the form 

(7-4) 

In view of the above pi/p0 = (Uj/ajo)-3”[1 + O(Sr/aj~)]. Thus, making the appropriate substitu- 
tion in (7.4) and integrating Eq. (7.2) with the hnearized right-hand side, we obtain 

Using the dimensionless variables (1.2), we can finally write the Rayleigh-Lamb equation, which 
takes into account, in the linear approximation, viscous and thermal dissipation, in the form [see 

(1.311 

t 
&T =-a&z,+- 

S WY -0D 

v - T)-% U j (7) dT (7.6) 

a, = 4k&%~*)9 aT = %g (yg - 1) (~g’T’t*/u*2)~ 

Let us now consider a procedure for deriving the amplitude equations. To ensure that dissipation 
appears only in the third approximation, we should formally take a, = ~~a~(‘), or = ~~a~(‘); apco), 

aTco) = O(1). Then only the function hi3 changes [see (5.1)], and on the right-hand side of (6.6) we 
should take t = to, Uj = ttjl. Seeing that ai1 = (u&exp(iO) -t-cc.), and evaluating the integral (the 
Fresnel integral), we find an additional term (associated with dissipation) to the first harmonic hjsIo 
in (5.2): 

@;’ = [ioa,(O) + (1 + i) 61’ (20)“/laOTlU~~r 

Using (3.1) and the existence condition (2.9), we obtain an additional term in the NSE (5.5). This 
additional term reduces the NSE to the Landau-G&burg equation (LGE) [3] 

(7.7) 
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At high frequencies we have 

ei Lw 
3 

- T c aaP+O-“’ (ET), 
2Jf2 f 

al Jo+o. - $ c&%~ (57) + aR 

Comparison with formulas (6.1) shows that at high frequencies the viscosity of the liquid starts 
playing a dominant role, suppressing the high-frequency non-linear instability. 

In conclusion we note that the LGE theory has been developed much less than the NSE theory, 
because in general the LGE is a non-integrable equation [3]. Nevertheless, the LGE, like the NSE, 
arises in the description of many physical systems [3] and is an important object for research, 
analogies, etc. 
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RENORMALIZATION GROUP METHOD FOR THE PROBLEM 
OF CONVECTIVE DIFFUSION WITH IRREVERSIBLE 

SORPTION”f 

I. S. GINZBURG, V. M. YENTOV and E. V. TEODOROVICH 

Moscow 

(Received 27 December 1990) 

The renormalization group method is used to analyse the propagation of a thin solute slug in a seepage flow 

with account of diffusion and sorption processes. Sorption is assumed to be partially irreversible and is 

described by an isotherm with a hysteresis loop. A general technique is developed for analysing the 

problem. Calculations for the self-similar case are presented and the results are shown to be sufficiently 

accurate compared with the exact solution. 

A NUMBER of problems in the theory of solute transport by seepage flow require consideration of the 
irreversibility of sorption in the porous medium. Irreversible retention of the solute is particularly 

t Prikl. Mat. Mekh. Vol. 56, No. 1, pp. 68-76, 1992. 


